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Abstract—A simple analysis is presented for the one-dimensional regenerator with a boundary condition
of the third kind and a stepwise change in gas temperature. The resulting storage capacity and extreme
temperatures are affected by different heat-transfer coefficients during the heating and cooling periods
as well as by the phase angle of heating. An analytical expression for the correct average transfer coefficient
is developed and it is shown that the harmonic average recommended frequently can result in heat flux
densities and matrix temperatures which are too high.

Although this analysis is exact only for the limiting case of zero matrix length or infinite heat capacity

of the gas the result may also be applied to more realistic situations.

NOMENCLATURE
¢, specific heat of solid [Jkg™ 'K '];
D, thickness of parallel slab (diameter of
cylinder or sphere) [m];
h, heat-transfer coefficient [Wm™2K ™ '};
k, thermal conductivity of solid [Wm™'K ™ '];
L, characteristic length [m];
q. heat-flux density [Wm™2];
t time [s];
T, temperature [K];
o thermal diffusivity [m*s™'];
2\ density of solid [kgm™*];
o, phase angle of heating [rad];
, rotational frequency [s™'].

Dimensionless quantities

Bi, = hj(pcwL) = hf(pcwL) Biot number;

Fo, = /[efwL’)] Fourier number;

H, = q/h(T,; — T,;) heat-flux parameter;

A, temperature defined by equation (15);
T—T,

A = ———— temperature;

T2 — Ty

T, = wt time.

Subscripts

1, for cooling time;

2, for heating time;

9. gas;

gl,g2, see Fig. 1;

s, solid;

, per cycle.

1. INTRODUCTION

THE REGENERATIVE heat-transfer process is charac-
terized by an alternating heat flux between a gas and
a solid matrix and its performance depends largely on
the mechanisms of conduction and convection. By
comparison, the indirect heat exchanger or recuperator
is adequately described by convection mechanisms
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alone. Consequently the thermal analysis of the
regenerator is usually more complicated and has been
the subject of continuing research and development.

Generally, the temperature of the regenerator matrix
has to be studied in three dimensions: time, depth from
the solid surface and length in the gas-flow direction.
Numerous versions of this problem, with differing
degrees of simplification, have been studied success-
fully but, to our knowledge, a general analytical result
in closed form has still not been found. Solutions in
the form of integral equations [1] and slowly converg-
ing series [2]. and a numerical approach [3], are
available but with none of these is the general influence
of the system parameters on the regenerator per-
formance shown very clearly. Based on the assumption
of similarities between recuperators and regenerators
[4] an extensive analytical study has been carried
out [5]. This resulted in an equivalent overall heat-
transfer coefficient for use in the total energy balance.
The analysis is practicable for long regenerators with
a stationary matrix, an arrangement frequently en-
countered in the steel industry. Then a number of
simplifications can be introduced with almost no loss in
accuracy. However, for shorter units such as the rotary
regenerator the complete solution must be employed
because the higher harmonics of the matrix tempera-
ture become important throughout the regenerator. In
order to reduce the calculation effort a graphical
method has been proposed as an alternative [5].

A similar but more idealized approach [6] leads to
results in the form of design charts. In this case it is
assumed that the gas temperatures are symmetric, i.e.
the mean gas-to-gas temperature difference averaged
over the whole period is the same throughout the
regenerator. This of course limits the application to
long regenerators and equal phase angles of heating
and cooling. More recently a simpler analysis, more
easily adaptable for use with computers, has been
presented [7]. However, due to the assumption of a
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gas-solid boundary condition of the second kind the
results are somewhat unrealistic in many practical situ-
ations. For the unidirectional regenerator, where the
gas phase always enters from the same side, the method
of Laplace transforms leads to a closed-form solution
[8]. Although the analysis becomes much simpler as
compared with the general problem. the solution is
still complicated and therefore presented in several
diagrams.

With most cryogenic and rotary regenerators the
storage material is highly conductive and the assump-
tion of a uniform temperature within a matrix element
becomes justified. This essential simplification permits
a closed-form solution for arbitrary gas-flow directions
[9] which agrees well with numerical results for
regenerator effectiveness [10]. Other effects like
variable gas density [11] and arbitrary entering-gas
temperature [12] have been investigated as well
Further, the commonly employed concept of constant
heat-transfer coethicients along the How path has been
examined [ 13] with the conclusion that in the entrance
region the matrix temperature may be quite different
from the usually accepted values.

The rotary regenerator, although in its thermal
behaviour not different from the stationary-matrix
regenerator, has received particular attention over the
past three decades because of its wide usc as an efficient
cconomizer in gas turbines. blast furnaces and power
stations. Plant performance is often directly affected by
regenerator performance so that a simple closed-form
solution is essential in order to optimize the overall
process. On the basis of physical models various
approximate relations have been developed which
seem to be uscful for design purposes. Assuming that
the gas phase is completely mixed at any cross-
section of the regenerator one obtains a readily usable
expression for the effectiveness [14]. Although this
assumption appears unrealistic, matrix arrangements
as in wire-screen or fast-rotating regenecrators are
approximated reasonably well. The former has been
analyzed experimentally [15] and theoretically [16]
on similar assumptions. Other models are aimed at
optimizing the matrix length and rotational speed [ 17]
or phase angle of heating [18] with respect to a
maximum plant performance; some results for sample
plants are presented in diagrams,

Finally, there is another type of heat exchanger in
which at least part of the energy is exchanged by
means of a regenerative process. In rotary kilns [ 19, 20]
or coolers [21] as well as rotating driers or flakers
[22. 23] the shell can be interpreted as the matrix. It
undergoes periodic temperature changes while being
contacted alternatively by a solid and a fluid phase.
In all these cases periodicity was recognized but mostly
it was not realized that one is dealing with a com-
paratively simple regenerator problem. The main
feature distinguishing this type from the classical
regenerator is that no axial coordinate needs to be
considered for the periodic part (see [21]) because at
any cross-section the gas and solid-phase temperatures
are independent of time. On the other hand the phase

times of heating and cooling as well as the relevant
heat-transfer coefficients differ markedly from cach
other, an important fact of which the analysis has to
take particular account.

It is mainly this last type of heat exchange which
we have in mind in the present study although some
general results applicable to the classical regenerator
problem are discussed here and elsewhere [31]. With
the assumption of time-independent gas temperaturcs
simple but accurate relations can be derived for any
values of individual phase times and heat-transfer
coefficients. Examining existing theorics and models
for their direct applicability onc concludes the
following: the strictly analytical approach [8.9, 11, 13]
does not allow for a time-dependent heat-transfer
coeflicient becausc this would introduce a non-lincar
boundary condition whereby the chosen methods of
solution become inapplicable. The theory of Hausen
[5] makes provision for variable phase times and heat-
transfer coefficients, particularly since he has intro-
duced refinements of the basic method to account for
temperature-dependent heat-transfer coctlicients [24]
and time-dependent gas-flow rates [23]. However. the
conceptof a harmonic average of the transfer cocflicient,
also adopted elsewhere [14], does not apply to the
limiting case of constant gas temperatures during
heating or cooling. Then the anticipated similarity
between recuperators and regenerators vanishes and a
different approach yields more accurate results.
Another method [7] which might be considered here
suffers from the slightly unrealistic boundary condition.
discussed before. Obviously a numerical approach can
always incorporate the desired features but no general
results have been presented so far.

In conclusion, we find it necessary to develop new
expressions for the average heat-transfer coetficient
which apply to the class of problems described. The
present paper deals with the case of infinite thermal
conductivity of the matrix whercas the case of finite
conductivity is investigated clsewhere [31]. In addition,
a general analysis of periodic conduction with a step
change in gas temperature is presented. With the step
length as a parameter the results are directly applicable
to problems of practical interest: in many cascs they
will represent a better approximation than cxisting
results which are based on a sinusoidal change in gas
temperature [26 28]

2. PARAMETERS AND ASSUMPTIONS

The temperature distribution in a solid body which
is periodically heated and cooled reaches a pseudo-
steady state and one is usually interested in onc or more
of the following pieces of information:

(a) Extreme tempcratures in the solid:

(b) Amplitude of temperature oscillation in the

symmetry axis;

(c) Storage capacity of a solid-volume clement.

In dimensionless form these are described primarily by
the two well-known parameters
- hL

Bi = |
i i (1)
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and

(/o)
B

where L is the characteristic length of the body and is
equal to the solid volume divided by the surface area
available for heat transfer. Hence

2 slab
4 cylinder . (3)
6 sphere

Fo = (2)

L=—, n=
n

From a study of the general case of a finite body with
finite thermal conductivity k there result conditions
(item b) for the validity of simplified analyses; in these
either a negligible thermal resistance or an infinite solid
thickness is assumed. The number of potential
applications may justify a separate treatment of these
two cases, particularly as effects like the ones discussed
here can be analyzed more generally.

In principle we have to consider a further parameter
which depends on the nature of the gas-temperature
oscillation. With a sinusoidal distribution the phase-
shift parameter accounts for the time lag between gas
and wall temperature whereas in the present analysis
the step length of heating is an important quantity.
However, it will be shown that under certain conditions
the latter can be incorporated in the heat-transfer
coefficient defined as an average over the complete
cycle. Apparently, no phase-shift parameter needs to be
considered here; with a stepwise change in gas
temperature there is no time lag between gas and solid-
surface temperature because as soon as the gas
temperature changes the driving temperature difference
between gas and solid must change its sign. This
conclusion holds as long as any source term or con-
stant temperature gradient can be separated from the
periodic problem. Then the extreme temperatures will
always be found on the surface and the results (items
a and c) become comparatively simple.

In the present study the thermal conductivity of the
solid must disappear and this is achieved by the
following combination of equations (1) and (2):

Biy—.., = Bi-Fo? = hf(pcwL). 4)

Equation (4) can in fact be interpreted as the Biot
number for this specific situation because it relates
the energy transferred between gas and surface to the
change in internal energy of the solid; this is
equivalent to the classical definition. We prefer not to
include any constants in this parameter which has to
be kept in mind when results from different sources
are compared. In the following analysis we delete the
subscript in equation (4) but exclusively use this
definition rather than equation (1).

For completeness we list the additional assumptions
made throughout this study. The physical properties of
the solid are independent of temperature and location,
the individual heat-transfer coefficients do not vary
over the periods of heating or cooling, the same
boundary condition of the third kind is valid on all
heat-transfer surfaces and finally, only the simplest

geometries are considered, i.e. infinitely long cylinder
and slab and sphere. More complex geometries like
the finite cylinder and mixed boundary conditions have
been analyzed [29] but on such a fundamental basis
that the results are difficult to apply in practice.

3. ANALYSIS

Under the assumptions stated above the extreme
temperatures of the solid and storage capacity result
from a simple energy balance and the actual results can
be obtained in different ways. In view of the general
approach to be followed for the more complicated
cases [31] we firstly present a solution which is based
on a Fourier-series representation of the gas tempera-
ture and on one heat-transfer coefficient valid for the
complete cycle. Thereafter an expression for the
equivalent average heat-transfer coefficient is derived
for use in the general solution.

Ty

—

I-¢ ¢
I‘b‘z 22 N T

F1c. 1. Periodic gas-temperature distribution.

According to Fig. | the gas temperature as a
continuous function of time becomes

T,(0)—T, 2 * 2
= b0=Tn_¢ 25 {S‘“("W ) cos@mnen)b(5)
Ty — Ty 275 Tp=1
With the dimensionless solid temperature
o, = 5O~ Ta
T =Ty

the energy balance for a solid element reads

db
pcL v h(f;—6,) (©6)
which is rewritten to become
do; .
= Bi(6,—0,). 7
dr

This first-order ordinary differential equation is solved
by direct integration and for our purposes the transient
part of the solution can be disregarded. A more detailed
account of the latter is given elsewhere [16]. In the
periodic steady state we obtain for the solid temperature

+Z

Tp=1
{sin(nd)/2) cos(2nnewt)+ (2nn/Bi) sin(2nnwt)} ®
x n 1 +(2nn/Bi)? '
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F1G. 3. Arithmetic average of the solid temperature; the curves are symmetric to
05 =05.

The time function in equation (8) could be transformed
to
1

———————cos[ 2nnwt —tan " *(27n/Bi

J[1+@nn/Bi?] L (2mn/B)]
as is usually done for similar cases [16, 30]. However,
this would give the impression of a time lag between
gas and solid-surface temperature which was shown not
to exist. It is therefore preferred to leave the result in
the form of equation (8). The difference between
maximum and minimum solid temperature becomes

sin?(n¢/2)

g =
Hs‘ @/ nm_gs T —pldro = As = = g 9
blovs fac—ass X {1+(2nn/Bi)} )

Bi =,

whereas the arithmetic average of the solid temperature
is given by

, ¢
(O] pjane +0slar - iane)/2 = b; = "

N sin(n¢) 1 (9a)

'y ]
7.2 14 2an\*¥]

n =

[+ |
From these equations the extreme temperatures can
readily be calculated and the results are shown in

Figs. 2 and 3; it is noted that the temperatures are
symmetric to ¢ = 7 and 8, = 0.5 respectively.
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The storage capacity is obtained in two different
ways:
(a) Integration of the heat-flux density over the
cooling time yields
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can be represented by a Fourier series; the step
change was chosen for its simplicity and direct use.
The heat-transfer coefficient was taken as constant
throughout the cycle or else the differential equation (7)

dn-drdro T, —T,1) becomes non-linear and the solution is complicated.
Go=h v [T{)—Tyu]dt = RN However, if we restrict ourselves now to a step change
; nd)(zn_ o 2 sin(nd2) in gas temperature and heat-transfer coefficient, a
S ‘:z’ Y ———= (10) situation of practical interest, an even simpler analysis
4n =1 nz{ 1 +<2ﬂ) j yields the exact average transfer coefficient for use in
Bi equations (9) and (12).
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F1G. 4. Dimensionless storage capacity of a solid element at various relative
heating times.

This is multiplied by the oscillation frequency and made
dimensionless to give the heat flux parameter

g 4 _$en—9)
- T —Ty) 472
oL T4 2
_72” sin*(ng/2) an
= 2<I +4n2n2>
n
Bi?

(b) Alternatively the result is obtained directly:

4o = LepA(Ty—Ty)  or {12a)
* { sin®(n¢/2)

H=238 - =) 12

,,; (Bi2+-47t2n2 {12)

The results are illustrated in Fig. 4 from which the
storage capacity is easily evaluated at any values of the
gas temperatures, step length ¢ or other relevant
parameters.

4. AVERAGE HEAT-TRANSFER COEFFICIENT
The previous analysis is general as far as different
heating and cooling periods are concerned and is
applicable to any gas-temperature distribution which

With a separate energy balance for both the heating
and cooling time, i.e.

dT; 2
pel 38 1,y < IO
dr w w (13)
and T n |
pel 8 -y RO
dr 0] w

one obtains, after integrating and making use of the
“switching condition” the following:

T;,max_ T;;Z

T;,min_ ’1;2 - exp(“BIZ)

and (14)
Ts.min_ Tg‘;l _ Bi
Ts.max_ T;;l - exp(_ ll).

These are two equations in two unknowns, T; ., and
T: min, and after some arithmetic we find that
Ts,max - T;.min A _ 1

I;:— T, : 1 1

— +
exp(Biy)—1 1 —exp(— Biy)

(15)
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and

Ix.mux + 7;,[11i11

{exp Biy +1){expBi,—1)
_os OB B)
exp(Bi, + Biy)— |
The individual Biot parameters incorporate both the
heat-transfer coefficient and the phase time. From
equation (13) and (14} it follows that

w/11(27z~(/))_ hydp

Bil I = .
peal2n

(16)

peorl2n

We note further that with

hy=h, and ¢=n

one gets

Biy = Biy = Bi;2.

In this specific case cquation (15) can be reduced to

xp(Bi|)+expl(— Bi) -2
_SPBLIHexp(= Bl =2

o (17)
exp(Biy)—exp(— Biy)

and
0,=05.

In a different form this last result was already presented
previously ([5]. p. 338) where the limiting case of an
infinitely short regenerator with a highly conductive
matrix was investigated.

Apparently equation (17} is completely equivalent to
equation (9) with ¢ = n. Then the average heat-transfer
coeflicient to be applied in equations (9) and (12) is
found by comparison of equations (15) and (17):

1

1 !
R + -
exp(Bij)—1 1 —expi—Biy) (18)

I = 4pcerLtanh !

By using this transfer coefhicient, which we may call the
exponential average, the parameter ¢ becomes
redundant and we only require the upper curves in
Figs. 2 and 4. However, the graphs with ¢ < 7 are
still useful for illustration of this parameter and for
potential direct application. It is pointed out that
according to equation (16) a change in the phase angle
of heating has the same effect on the final result as the
corresponding change in heat-transfer coefhicient.
Hence the lower curves of Figs. 2 and 4 as well as
Fig. 3 apply also to differing individual transfer
cocflicients,

5. DISCUSSION OF RESULTS

From Fig. 4 it is seen that with increasing rotational
frequency and all the other variables staying constant
the storage capacity has a maximum at » — . This
result may be somewhat surprising because simul-
taneously the amplitude of the temperature oscillation
approaches zero (see Fig. 2) and onc might have
expected a maximum storage capacity at some finite

value of v». The asymptotic solution is found explicitly
from equation (11). With ¢ = n and Bi— 0 it follows
that

Hpgino = 0.25. (19)

a particularly simple result which can also be applied
approximately to more realistic situations; the error is

AH < +1°, for Bi<07.

However, then we have to keep in mind our basic
assumption of negligible thermal resistance; a large
value of » may impose limits on the maximum
permissible value of L.
For very large Biot numbers another asymptotic
solution is available. With A, — 1, equation (12a) yields
|

HB["X =

R
Bi 20

where

AH < +1%, for Biz=105.

Both asymptotic solutions are shown in Fig. 4 and may
be usefully applied in certain ranges of the variables.

Further, we conclude from Fig. 4 that at low Biot
numbers the influence of differing phase angles of
heating and cooling or differing heat-transfer co-
efficients is very marked, whereas this effect becomes
small at high Biot numbers. This is reasonable, since
in the latter case the solid temperature approaches
both gas temperatures such that the storage capacity
of the solid is exhausted.

For Bi, # Bi, thelarger of the two will have a smaller
effect on the average than is expressed in the harmonic
average recommended elsewhere 5, 14]. In the limit of
one Biot number approaching zero or infinity both
averages yield the same general result that the mean
Biot number becomes zero and stays finite respectively.
It is seen that these necessary conditions are not
satisfied by the arithmetic average which was also
recommended occasionally (see [14]); therefore the
latter is not considered in the further discussion. In
the notation chosen here the harmonic average
becomes

2

h= (21

s T

— + S
hag  hi(2rn—¢)
By comparison with equation (18) we realise that
equation (21) (a) over-represents the influence of the
higher heat-transfer coefficient on the average,
particularly when both coefficients are large, and
(b) does not take into account the absolute magnitude
of the Biot number, ie. the term (pcwL). From
equation (18)
Bi/Bi, = f(Bi,/Biy, Bi), (22)
whereas from equation (21)
Bl’/”Bl‘z zj(Bll//Blz)
Equation (22) is illustrated in Fig. 5 and for com-

parison the harmonic average is shown as well. In
certain ranges of the parameters the difference becomes
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F16. 5. Evaluation of the average Biot number from the individual
parameters during cooling and heating.

substantial and can be explained in the following way:

The absorption or release of energy by the solid body
is controlled by the gas film because we assumed a
negligibly small internal resistance. Hence the total
resistance between bulk fluid and solid is inversely
proportional to the gas-to-surface temperature
difference. According to equation (21) this is supposed
to stay constant during heating or cooling and the
sum of the two resistances yields the average over the
complete cycle. However, with constant gas tempera-
tures the driving force decreases exponentially with
time so that the equivalent overall transfer coefficient
is further reduced. In addition, the rate of temperature
change in the solid depends on the value of (pcwL)
whence the difference between equations (18) and (21)
must depend on the absolute values of the individual
Biot numbers.

An estimate of the error involved in using equation
(21) rather than equation (18) can be obtained from
Fig. 6. This graph also facilitates the calculation of
the true average transfer coefficient in that the
exponential average can be evaluated without using
tables of hyperbolic functions. Together with the upper
curves of Figs. 2 and 4 one then determines the extreme
temperatures in the solid as well as the storage capacity
for any values of the independent variables. Although
other combinations of the variables, resulting in
different parameters, have been proposed [5, 28, 30],
it is felt that with the ones presented here the relevant
information on the system is obtained more directly.
It is noted that in equation (18) the individual Biot
parameters are interchangeable without any effect on
the mean value; hence by exchanging indices Figs. 5
and 6 are applicable to cases where Bi, < Bi,.
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Fi1G. 6. Ratio of exponential to harmonic average of the Biot number for different
combinations of the individual parameters.
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6. APPLICATIONS

It is noticed in Fig. 2 that any error arising from
the use of equation (21) rather than equation (18) is not
projected linearly onto the extreme temperatures and
storage capacity. At large Biot numbers the error in
A, or H becomes small and the harmonic average may
be used with good approximation. On the other hand,
at small Biot numbers the exponential functions in
equation (18) can be approximated by the first two
terms of their power-series representation and
equations (18) and (21) become identical. Apparently,
this is the reason why in the limit of infinite rotational
frequency w the harmonic average was found to be
exact [14]. However in the range 0.5 < Bi <5 the
error can be substantial; as an example the storage
capacity of a copper wire of variable diameter was
calculated from [5] and from the present equations and
the results are shown in Table 1.

J. KERN

calculations described in Section 4. bul now with
variable slopes of the gas temperatures. It was found
that for 2 < Bi<7 and small slopes up 1o
(T;2 — T51)/(10/w) the exponential average still supplies
more accurate results than the harmonic one. With a
very large slope, i.e. a fast change is. gas temperature,
even the harmonic average yiclds too little storage
capacity; this might have been the reason for suggesting
the use of an arithmetic average. However, as the choice
of the slope was arbitrary no further details will be
discussed here. The quantitative results not
significant as long as the slope is not linked to an
energy balance. The reason for performing these
calculations was to support the conclusion that with
high heat capacities of the gas streams and;or short
regenerators the exponential average is preferable to the
harmonic one.

It may be noted that detailed analyses have been

dre

Table 1. Storage capacity of a copper plate at different conditions and error resulting
from the use of the harmonic average of the transfer coefficient

- MJ . 1. . = . _ -
Data pC = 3.44;§E H = 300; hy = 20; ng Tgl = 200
h2 20 100 200
o/ 2 0.1667 0.5 0.75
q q q
D qexp qharm Qexp qharm qexp qharm
exp exp exp
0.0001 393 1.090 556 1.025 473 1.131
0.002 493 1.046 946 1.086 668 1.182
0.004 537 1.014 1 325 1.074 811 1.127
0.008 551 1.003 1 552 1.029 899 1.061

The analysis developed here is directly applicable to
all situations where the gas temperatures stay constant
(see Fig. 1). However, with many rotary and other
regenerators the gas temperature at some interior point
varies with time. A profile according to Fig. 7 is more
likely to exist at some distance from the regenerator
ends and one would like to know how accurately
either of the discussed averages represents this
distribution. the

For that purpose we repeated

-t
F1G. 7. Approximated gas-temperature distribution in a
regenerator.

performed on the basis of Fig. 1 [14, 16] but on the
assumption of an average transfer coefficient given by
equation (21) [14]. This aforegoing seems to be
inconsistent because if Fig. 1, apart from the absolute
values of temperature, holds for any cross section
then equation (18) also applies to the regenerator as a
whole.

Finally, we may correct a statement made previously
about adjusting the phase angles for unequal gas-flow
rates in rotary (in particular wire-screen) regenerators.
It was recommended [16] that the ratio of the cross-
sectional areas of the matrix be made equal to the
corresponding ratio of the mass-flow velocities of the
gases so that the heat-transfer coetlicients became the
same for both streams. From cquation (18) as well as
equation (21) it is seen that this has no cffect on the
regenerator performance if the heat-transfer coeflicient
is linearly proportional to the velocity, the latter being
inversely proportional to the phase angle. However.
we know from experiments [32] that the fundamental
results on cross flow over a wire [33] also hold for wire-
mesh regenerators, hence over a wide range of velocities

ho~ (1),

In that case the recommended design procedure may
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yield lower individual Biot numbers in comparison
with the ones for ¢ = n; according to equation (18)
this results in a reduced efficiency of the exchanger. If,
for purposes of reducing pressure losses, a change of
the phase angles is still necessary its effect on the
regenerator performance has to be analyzed by the use
of equation (18) and Fig. 2. Particularly with gas-
turbine plants the optimum phase angle for maximum
efficiency must result from a balance of the effects of
pressure drop and heat-exchanger performance.

With high-temperature regenerators the selection of
the storage material depends on the maximum matrix
temperature at the hot end of the regenerator. Here
the exponential average can be used with good
approximation because the gas temperature stays
constant during the heating period. Apparently, the
critical temperature as predicted by equation (18) is
lower than the one from equation (21) so that less
expensive materials can be used in certain cases.

7. CONCLUSIONS

Heat exchange between a solid and a gas of
periodically varying temperature has been analyzed
resulting in easily applicable equations for extreme
matrix temperatures and storage capacity. However,
the process was assumed to be “gas-film” controlled
and the gas temperatures were supposed to stay
constant. The main purpose was to derive an equation
for the average heat-transfer coefficient, which accounts
for variable times of heating and cooling and differing
individual transfer coefficients. It was found that the
exponential average as defined by equation (18) is exact
whereas the harmonic average yields only approximate
results, i.e. too high temperature and storage capacity
of the matrix.

The possible use of the results in the design of
rotary regenerators was discussed and it was concluded
that the exponential average is applicable to short
regenerators and/or processes with high heat capacities
of the gas streams. The main advantage of this analysis
over existing theories is that the effect of variable Biot
numbers, given by equations (16), on the regenerator
characteristics can be evaluated in a direct and simple
way and therefore may be incorporated in an
economical design procedure.
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SUR LE COEFFICIENT DE TRANSFERT MOYEN DANS UN ECHANGE
PERIODIQUE DE CHALEUR: SOLIDE DE RESISTANCE THERMIQUE NEGLIGEABLE

Résumeé—-On présente une analyse simple de régénérateur unidimensionnel avec conditions aux limites
de troisiéme espéce et changement discontinu de la température du gaz. La capacité d’accumulation et la
valeur des températures extrémes résultantes sont affectés par les coeflicients de transfert thermique
différents pendant les périodes de chauffage ct de refroidissement ainsi que par le déphasage. On a
développé une expression analytique donnant le coeflicient moyen de transfert correct et on montre que
la moyenne harmonique souvent recommandée peut conduire a une surestimation des densités de flux
de chaleur et des températures de matrice.

Quoique cette étude ne soit exacte que pour le cas Iimite d'une matrice de longueur nulle ou d’un gaz
de capacité calorifigue infinie. les résultats sont également applicables & des situations plus proches de la

réalite.

UBER DEN MITTLEREN WARMEUBERGANGSKOEFFIZIENTEN BEI PERIODISCHEM
WARMEAUSTAUSCH: UNENDLICH GUT LEITENDE SPEICHERMASSE

Zusammenfassung —Fur den periodischen Wirmeaustausch zwischen cinem Gas von sprungartig
veridnderlicher Temperatur und einem unendlich gut leitenden Material wird ein einfaches Berechnungs-
verfahren angegeben. Die Speicherkapazitit und extremen Materialtemperaturen hdangen nicht nur von
der relativen Dauer der Heizzeit sondern auch von den unterschiedlichen Warmeiibergangskoeffizienten
in Heiz-und Kiihlzeit ab. Fine exakte Bezichung fiir den mittleren Wirmeiibergangskoeffizienten wird
hergeleitet, und es zeigt sich, dafl der oft empfohlene harmonische Mittelwert zu hohe Werte fir die
Speicherkapazitat und Matrixtemperatur liefert.

Obwohl das Verfahren streng genommen nur auf den unendlich kurzen Regenerator oder bei
unendlicher Wirmekapazitit der Gase anwendbar ist, lassen sich auch realistischere Falle mit guter

Niherung behandein.

CPEAHVA KO3®GUUMEHT NMEPEHOCA TEIMJA AJA TBEPAOIO TEJIA
C HEBHAYMTEJALHBIM TEINJIOBbLIM COIMMPOTUBJIEHWUEM I1PU
NMEPUMOANYECKOM M3MEHEHWW TEMIIEPATY Phbl

AnHoTauus — [TpoBeseH aHann3 ONHOMEPHOTO pereHepaTopa ¢ rpaHUuHbIMM YCITOBUSIMH TPETLETO
pOa M CTYNEHYATHIM H3IMEHEHUEM TCMIIEPaTypbl Ta3a. PelynbTupyroluas akkyMy aMpycLian éMKOCTh
M IKCTPEMAJIBHBIC TEMMEPATYPbI 3aBUCAT OT Pa3inyHbIX KOIPPULIMEHTOB TENNOOOMEHA NPYU Harpese
M OXNaXIeHHWH, a TAKXKe OT yrna caBura ¢a3 npu Harpese. [1os1yueHo aHaNMTHYECKOE BbIpakeHHe A5
COOTBETCTBYIOWErO cpeaHero kodhduineHTa nepeHoca ¥ 10Ka3aHo, Y4TO 4acTo UCNoNb3yeMas cpea-
HSIS TAPMOHHKA MOXET 1aTh OYEHb BLICOKHE 3HAYEHUS MITOTHOCTH TENJIOBOTO NOTOKA M TeMNepaTypbl
MaTpuubl. HecMOTps Ha TO, 410 HTOT aHalM3 TodeH TOMbLKO 1S MPEACIbHONO ciy4as HYNeBO#
[UTAHBLI MaTPHULbl MM BECKOHEYHOU TEMIOEMKOCTH Ta3a, MOJYYEHHbIC Pa3yNbTaTbl MOXHO TaKke
HCNoNL30BaTh B 00J1eC 4aCTO BCTPCYAIOILMXCA B MIPAKTHUKE C/Tyvanx.



