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Abstract-A simple analysis is presented for the one-dimensional regenerator with a boundary condition 
of the third kind and a stepwise change in gas temperature. The resulting storage capacity and extreme 
temperatures are affected by different heat-transfer coefficients during the heating and cooling periods 
as well as by the phase angle of heating. An analytical expression for the correct average transfer coefficient 
is developed and it is shown that the harmonic average recommended frequently can result in heat flux 
densities and matrix temperatures which are too high. 

Although this analysis is exact only for the limiting case of zero matrix length or infinite heat capacity 
of the gas the result may also be applied to more realistic situations. 

NOMENCLATURE 

c, specific heat of solid [Jkg- ’ K-l]; 

D, thickness of parallel slab (diameter of 
cylinder or sphere) [m] ; 

h, heat-transfer coefficient [Wme2 K- ‘1; 

k, thermal conductivity of solid [Wm- ’ Km ‘I; 

L characteristic length [m] ; 

4, heat-flux density [Wm-‘1; 

I, time [s] ; 
T temperature [K]; 

K, thermal diffusivity [m’s_ ‘1; 

P, density of solid [kg m- “1; 

4% phase angle of heating [rad] ; 
0, rotational frequency [s- ‘1. 

Dimensionless quantities 

Bi, = &~cwL) = h/(pcwL) Biot number; 

Fo, = &cc/(&)] Fourier number; 

H, = q/h( Tg2 - T,,) heat-flux parameter; 

A, temperature defined by equation (15); 

8, 
T- Tsl 

= ~ temperature; 
q2-Tg1) 

T. = wt time. 

Subscripts 

1, for cooling time; 

2, for heating time; 

9, gas ; 
gl, 92, see Fig. 1; 

s, solid; 

(0, per cycle. 

1. INTRODUCTION 

THE REGENERATIVE heat-transfer process is charac- 
terized by an alternating heat flux between a gas and 
a solid matrix and its performance depends largely on 
the mechanisms of conduction and convection. By 
comparison, the indirect heat exchanger or recuperator 
is adequately described by convection mechanisms 

alone. Consequently the thermal analysis of the 

regenerator is usually more complicated and has been 
the subject of continuing research and development. 

Generally, the temperature of the regenerator matrix 
has to be studied in three dimensions: time, depth from 

the solid surface and length in the gas-flow direction. 
Numerous versions of this problem, with differing 

degrees of simplification, have been studied success- 
fully but, to our knowledge, a general analytical result 
in closed form has still not been found. Solutions in 

the form of integral equations [I] and slowly converg- 
ing series [2]. and a numerical approach [3], are 
available but with none of these is the general influence 

of the system parameters on the regenerator per- 
formance shown very clearly. Based on the assumption 
of similarities between recuperators and regenerators 
[4] an extensive analytical study has been carried 
out [5]. This resulted in an equivalent overall heat- 
transfer coefficient for use in the total energy balance. 
The analysis is practicable for long regenerators with 
a stationary matrix, an arrangement frequently en- 
countered in the steel industry. Then a number of 
simplifications can be introduced with almost no loss in 
accuracy. However, for shorter units such as the rotary 

regenerator the complete solution must be employed 
because the higher harmonics of the matrix tempera- 
ture become important throughout the regenerator. In 
order to reduce the calculation effort a graphical 
method has been proposed as an alternative [5]. 

A similar but more idealized approach [6] leads to 

results in the form of design charts. In this case it is 
assumed that the gas temperatures are symmetric, i.e. 
the mean gas-to-gas temperature difference averaged 
over the whole period is the same throughout the 
regenerator. This of course limits the application to 
long regenerators and equal phase angles of heating 
and cooling. More recently a simpler analysis, more 
easily adaptable for use with computers. has been 
presented [7], However. due to the assumption of a 
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gas-solid boundary condition of the second kind the 
results are somewhat unrealistic in many practical situ- 
ations. For the unidirectional regenerator. where the 

gas phase always enters from the same side. the method 
of Laplace transforms leads to a closed-form solution 

[8]. Although the analysis becomes much simpler as 
compared with the general problem. the solution is 
still complicated and therefore presented in several 

diagrams. 
With most cryogenic and rotary regcncrators the 

storage material is highly conductive and the assump- 
tion of a uniform temperature within a matrix element 
becomes justified. This essential simplification permits 
a closed-form solution for arbitrary gas-now directions 

[9] which agrees well with numerical results for 
regenerator effectiveness [IO]. Other clTects like 

variable gas density [I I] and arbitrary entering-gas 
temperature [12] have been investigated as well. 

Further. the commonly employed concept of constant 

heat-transfer coefficients along the Row path has been 
examined [ !3] with the conclusion that in the entrance 

region the tnatrix temperature may be quite different 

from the usually accepted values. 
The rotary regenerator, although in its thermal 

behaviour not different from the stationary-matrix 
regenerator, has received particular attention over the 
past three decades because of its wide USC as an efficient 
cconomizcr in gas turbines. blast furnaces and power 
stations. Plant performance is often directly arectcd by 
regenerator performance so that a simple closed-form 

solution is essential in order to optimize the overall 
process. On the basis of physical models various 
approximate relations have been developed which 

seem to be useful for design purposes. Assuming that 
the gas phase is completely mixed at any cross- 
section of the regenerator one obtains a readily usable 

expression for the eff‘cctiveness [II]. Although this 
assumption appears unrealistic. matrix arrangcmetits 
as in wire-screen or fast-rotating regenerators are 
approximated reasonably well. The former has been 
analyzed experimentally [ 151 and theoretically [ 161 
on similar assumptions. Other models are aimed at 
optimizing the matrix length and rotational speed [ 171 
or phase angle of heating [Is] with respect to a 
maximum plant performance: some results for sample 

plants are presented in diagrams. 
Finally, there is another type of heat exchanger in 

which at least part of the energy is exchanged by 
means ofa regenerative process. In rotary kilns [19.20] 
or coolers [-?I] as well as rotating driet-s or llakers 
[22. 231 the shell can be interpreted as the matrix. It 
undergoes periodic temperature changes while being 
contacted alternatively by a solid and a fluid phase. 
In all these cases periodicity was recognized but mostly 
it was not realized that one is dealing with a com- 
paratively simple regenerator problem. The main 
feature distinguishing this type from the classical 
regenerator is that no axial coordinate needs to be 
considered for the periodic part (see [21]) because at 
any cross-section the gas and solid-phase temperatures 
are independent of time. On the other hand the phase 

times of heating and cooling as well as the rcle\ ant 

heat-transfer coefficients direr markcdlq ftrom each 
other. an important fact of which the analysis iix lo 

take particular account. 
It is mainly this last type of heat exchange M hlch 

WC have in mind in the present study although somc 
general results applicable to the classical rcgcncratol 

problem are discussed here and elsewhere 1311. With 
the assumption of time-independent gas tempcraturc\ 
simple but accurate relations can bc derived for any 

values of individual phase time\ and heat-transfct 
coeficients. Examining existing theories and models 
for their direct applicability one concludes the 
following: the strictly analytical approach [X. 0. I I. 131 
does not allow for a time-dependent heat-tr-an& 
coefficient because this would introduce a non-Iinca! 
boundary condition whereby the chosen method5 ol 
solution become inapplicable. The theory of Hausen 

[j] makes provision for variable phase times and hcat- 
transfer coefficients. particularly since hc has intro- 

duced refinements of the basic method to account fol 
temperature-dependent heat-transfer cocficients [ 241 
and time-dependent gas-Row rates [2i]. llowc~cr. the 
concept ofa harmonic average of the transfer cocfticicnt. 

also adopted clseuhere [14]. does not apply to the 
limiting cast of constant gas tempcraturcs during 
heating or cooling. Then the anticipated similarity 
between recuperators and regenerators canishes and ;I 

different approach yields more accurate results. 

Another method [7] which might be considcrcd here 
sufl’ers from the slightly unrealistic boundary condition. 
discussed before. Obviously a numerical approach can 
always incorporate the desired features but no general 

results have been presented so far. 
In conclusion, MC find it necessary to dcvclop nc\$ 

expressions for the average heat-transfer coetficient 
which apply to the class of problems described. The 
present paper deals with the case of inlinitc thermal 
conductivity of the tnatrix \n, hereas the cast of tinite 
conductivity is investigated ctsewherc [3 I]. In addition, 
a general analysis of periodic conduction with a step 
change in gas temperature is presented. With the btep 
length as a parameter the results arc directly applicable 
to problems of practical interest: in man) cxscs thq 
wilt represent :I better approximation than clristmg 
results which are based on a sinusoidal change in ?!a> 
temperature 126 2X]. 

2. P.AKASIETEHS AND 4SSL CIPTIONS 

The temperature distribution in a solid body which 
is periodically heated and cooled reaches a pseudo- 
steady state and one is usually interested in one or more 
of the following pieces of information: 

(a) Extreme temperatures in the solid: 
(b) Amplitude of temperature oscillation in the 

symmetry axis; 
(c) Storage capacity of a solid-volume clement. 

In dimensionless form these are described primarily by 
the two welt-known parameters 

(1) 



Average transfer coefficient in periodic heat exchange--I 871 

and geometries are considered, i.e. infinitely long cylinder 

F. = J(g/@ 
and slab and sphere. More complex geometries like 

L ’ 
(2) the finite cylinder and mixed boundary conditions have 

been analyzed [29] but on such a fundamental basis 

where L is the characteristic length of the body and is that the results are difficult to apply in practice. 

equal to the solid volume divided by the surface area 
available for heat transfer. Hence 3. ANALYSIS 

Under the assumptions stated above the extreme 

LL temperatures of the solid and storage capacity result 

n ’ 
n= (3) from a simple energy balance and the actual results can 

be obtained in different ways. In view of the general 

From a study of the general case of a finite body with 
finite thermal conductivity k there result conditions 
(item b) for the validity of simplified analyses; in these 
either a negligible thermal resistance or an infinite solid 

thickness is assumed. The number of potential 

applications may justify a separate treatment of these 
two cases, particularly as effects like the ones discussed 
here can be analyzed more generally. 

In principle we have to consider a further parameter 

which depends on the nature of the gas-temperature 
oscillation. With a sinusoidal distribution the phase- 

shift parameter accounts for the time lag between gas 
and wall temperature whereas in the present analysis 
the step length of heating is an important quantity. 
However, it will be shown that under certain conditions 
the latter can be incorporated in the heat-transfer 

coefficient defined as an average over the complete 
cycle. Apparently, no phase-shift parameter needs to be 

considered here; with a stepwise change in gas 
temperature there is no time lag between gas and solid- 
surface temperature because as soon as the gas 
temperature changes the driving temperature difference 
between gas and solid must change its sign. This 
conclusion holds as long as any source term or con- 
stant temperature gradient can be separated from the 
periodic problem. Then the extreme temperatures will 
always be found on the surface and the results (items 
a and c) become comparatively simple. 

In the present study the thermal conductivity of the 

solid must disappear and this is achieved by the 
following combination of equations (1) and (2): 

approach to be followed for the more complicated 
cases [31] we firstly present a solution which is based 
on a Fourier-series representation of the gas tempera- 
ture and on one heat-transfer coefficient valid for the 

complete cycle. Thereafter an expression for the 
equivalent average heat-transfer coefficient is derived 
for use in the general solution. 

‘“t 

“;--%%jq 

- . 

FIG. I. Periodic gas-temperature distribution. 

According to Fig. I the gas temperature as a 
continuous function of time becomes 

T,(t)-T,, 
0, = ~ 

4 2 jg sin(n$/2) 

T92 - T,l =2n+rrZ 
-----cos(2nnwt) .(5) 

n 1 1 I1 I 

With the dimensionless solid temperature 

fj 
s 

= T,(t)- T,l 

Tg2 - L 

Bi - Bi.Fo’ = h/(pcwL). k-n - (4) the energy balance for a solid element reads 

Equation (4) can in fact be interpreted as the Biot 
number for this specific situation because it relates (6) 

the energy transferred between gas and surface to the 
change in internal energy of the solid; this is 

which is rewritten to become 

equivalent to the classical definition. We prefer not to 
include any constants in this parameter which has to 

do, 
x = Bi(f3, - 0,). (7) 

be kept in- mind when results from different sources 
are compared. In the following analysis we delete the 

This first-order ordinary differential equation is solved 

subscript in equation (4) but exclusively use this 
by direct integration and for our purposes the transient 

definition rather than equation (1). 
part of the solution can be disregarded. A more detailed 

For completeness we list the additional assumptions 
account of the latter is given elsewhere [16]. In the 

made throughout this study. The physical properties of 
periodicsteady state we obtain for the solid temperature 

the solid are independent of temperature and location, 
the individual heat-transfer coefficients do not vary 

OS=&+; $ 
n 1 

over the periods of heating or cooling, the same 
boundary condition of the third kind is valid on all 

i 

sin(n4/2) cos(27-r1~0r) + (2nn/Bi) sin(2?mwt) 
X 

heat-transfer surfaces and finally, only the simplest n 1 + (2nn/Bi)’ 
1. (8) 
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FIG;. 2. Difference between maximum and minimum solid temperature for step 
change in gas temperature and with relative heating time as parameter. 

I v2 El 
I I , 

0 1.0 2.0 30 4.0 5.0 6-O 7.0 8.0 90 I( 

- Bi 

FIO. 3. Arithmetic average of the solid temperature: the curves are symmetric to 
0, = 0.5. 

The time function in equation (8) could be transformed 

to 

JL1 +(21nmi)z] cos[27tnwt - tan- ‘(27+Bi)] 

as is usually done for similar cases [16, 301. However, 
this would give the impression of a time lag between 
gas and solid-surface temperature which was shown not 
to exist. It is therefore preferred to leave the result in 
the form of equation (8). The difference between 
maximum and minimum solid temperature becomes 

whereas the arithmetic average of the solid temperature 
is given by 

From these equations the extreme temperatures can 
readily be calculated and the results are shown in 
Figs. 2 and 3; it is noted that the temperatures are 
symmetric to 4 = TC and & = 0.5 respectively. 
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The storage capacity is obtained in two different can be represented by a Fourier series; the step 

ways : change was chosen for its simplicity and direct use. 
(a) integration of the heat-flux density over the The heat-transfer coefficient was taken as constant 

cooling time yields throughout the cycle or else the differential equation (7) 

q,, = ir [7Jt)- T,,] dt = h(T”zC; ‘I) 
becomes non-linear and the solution is complicated. 
However, if we restrict ourselves now to a step change 

C&27?&) 

i 

2 7 
in gas temperature and heat-transfer coefficient, a 

x -XT ----I 712 (10) situation of practical interest, an even simpler analysis 
~~=lnz yields the exact average transfer coefficient for use in 

equations (9) and (12). 

0 2.0 4.0 t-0 8.0 10.0 12.0 14.0 16.0 18.0 260 
-Bi 

FI<j. 4. Dimensionless storage capacity of a solid element at various relative 
heating times. 

This is multiplied by the oscillation frequency and made 

dimensionless to give the heat flux parameter 

sin’(n$/2) 

4n2n2 

! i 

(11) 

n2 I+---- 
Bi2 

(b) Alternatively the result is obtained directly: 

q,, = LcpA,(&2-~1) or (12a) 

(12) 

The results are illustrated in Fig. 4 from which the 

storage capacity is easily evaluated at any values of the 
gas temperatures, step length $ or other relevant 
parameters. 

4. AVERAGE HEAT-TRANSFER COEFFICIENT 

The previous analysis is genera1 as far as different 
heating and cooling periods are concerned and is 
applicable to any gas-temperature distribution which 

With a separate energy balance for both the heating 
and cooling time, i.e. 

(13) 

one obtains, after integrating and making use of the 
“switching condition” the following: 

and 

- 1,2 

Lin - Tg2 
= exp( - Bi2) 

T,,min- T,l 
Lmx - T,l 

= exp( -RI). 

These are two equations in two unknowns, T,,,,, and 
T,,,i”, and after some arithmetic we find that 

T,,rmx - 

r,2-T,l 

A, = 
1 

(13 

exp(Bir) - 
+ 

I - Bi2) 
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The individual Biot parameters incorporate both the 
heat-transfer cocflicient and the phase time. From 

equation (1 ?I and ( l-1) it follows that 

Bi 
I (16) 

We note further that with 

II, = /I? m_l (I, = T[ 

one pets 

Bi, = RiZ = Bi 2. 

In this specific case equation ( 15) can be reduced to 

A, = 
exp(Ri,)+exp(-Bi,)-7 

= tanh(Ri.4) (17) 
exp(Ri,)-exp( -Ri,) 

and 

0, = 0.5. 

In a different form this last result was already presented 
previously ([5]. p. 338) where the limiting case of an 
infinitely short regenerator with a highly conductive 
matrix was investigated. 

Apparently equation (I 7) is completely equivalent to 

equation (9) with li, = 7~. Then the average heat-transfer 

cocfticicnt to be applied in equations (9) and (12) is 
found by comparison of equations ( 15) and (I 7): 

I; = 4/WI1, tanh I 
I 

__- 

I I 

cxp(Bi, )- I + I -exp(-Ri?) (IX) 

By usmg this transfer coefficient. which we may call the 
exponential avcragc. the parameter 9 becomes 

redundant and we only require the upper curves in 
Figs. 2 and 4. However. the graphs with (i, < z are 
still useful for illustration of this parameter and fol 
potential direct application. It is pointed out that 
according to equation (16) a change in the phase angle 
of heating has the same e8‘ect on the final result as the 
corresponding change in heat-transfer coeBicient. 
Hence the lower curves of Figs. 2 and 4 as well as 
Fig. 3 apply also to differing individual transfer 
coefficients. 

5. DISCL~SSION OF RESULTS 

From Fig. 4 it is seen that with increasing rotational 

frequency and all the other variables staying constant 
the storage capacity has a maximum at (‘1 + X. This 
result may he somewhat surprising because simul- 
taneously the amplitude of the temperature oscillation 
approaches Lero (see Fig. 2) and ono might have 
expected a maximum storage capacity at some finite 

value of YI. The asymptotic solution is found explicitly 
from equation (I 1). With (jj = T[ and Bi + 0 it follows 

that 
Hfli-rI = 0.25. (19) 

a particularly simple result which can also be applied 

approximately to more realistic situations: the error is 

AN < + I”,, for Bi < 0.7 

However, then we have to keep in mind our basic 
assumption of negligible thermal resistance; a large 
value of VI may impose limits on the maximum 
permissible value of L. 

For very large Biot numbers another asymptotic 
solution is available. With A, + I. equation (l2a) yields 

where 

AH < +I”,, for Bi 2 10.5 

Both asymptotic solutions are shown in Fig. 4 and may 
be usefully applied in certain ranges of the variables. 

Further, we conclude from Fig. 4 that at low Biot 
numbers the influence of differing phase angles of 
heating and cooling or differing heat-transfer co- 
efficients is very marked, whereas this effect becomes 
small at high Biot numbers. This is reasonable, since 
in the latter case the solid temperature approaches 

both gas temperatures such that the storage capacity 
of the solid is exhausted. 

For Bi, # Bi2 the larger of the two will have a smaller 
cff‘ect on the average than is expressed in the harmonic 
average recommended elsewhere [5,14]. In the limit of 
one Biot number approaching zero or infinity both 

averages yield the same general result that the mean 
Biot number becomes zero and stays finite respectively. 
It is seen that these necessary conditions are not 
satisfied by the arithmetic average which was also 
recommended occasionally (see [ 141); therefore the 
latter is not considered in the further discussion. In 
the notation chosen here the harmonic average 
becomes 

h = 
2 

By comparison with equation (18) we realise that 

equation (21) (a) over-represents the influence of the 

higher heat-transfer coefficient on the average, 
particularly when both coefficients are large, and 
(b) does not take into account the absolute magnitude 
of the Biot number, i.e. the term (ycoL). From 
equation (IX) 

(22) 

whereas from equation (2 I ) 

Equation (22) is illustrated in Fig. 5 and for com- 
parison the harmonic average is shown as well. In 
certain ranges of the parameters the difference becomes 
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harmonic average A 

&I;,=o.s 0 

I .o . 
3.0 0 

10.0 . 

0 1 1 I I I I 

1.0 20 30 4.0 5.0 6.0 7.0 8.0 PO IO 

-Si,/ Bi, 

FI<j. 5. Evaluation of the average Biot number from the individual 
parameters during cooling and heating. 

9 

875 

substantial and can be explained in the following way: 
The absorption or release of energy by the solid body 

is controlled by the gas film because we assumed a 
negligibly small internal resistance. Hence the total 
resistance between bulk fluid and solid is inversely 
proportional to the gas-to-surface temperature 
difference. According to equation (21) this is supposed 
to stay constant during heating or cooling and the 

sum of the two resistances yields the average over the 

complete cycle. However, with constant gas tempera- 
tures the driving force decreases exponentially with 
time so that the equivalent overall transfer coefficient 

is further reduced. In addition, the rate of temperature 
change in the solid depends on the value of (pcwL) 

whence the difference between equations (18) and (21) 
must depend on the absolute values of the individual 
Biot numbers. 

An estimate of the error involved in using equation 
(21) rather than equation (18) can be obtained from 
Fig. 6. This graph also facilitates the calculation of 
the true average transfer coefficient in that the 
exponential average can be evaluated without using 
tables of hyperbolic functions. Together with the upper 

curves of Figs. 2 and 4 one then determines the extreme 
temperatures in the solid as well as the storage capacity 
for any values of the independent variables. Although 
other combinations of the variables. resulting in 
different parameters, have been proposed [5, 28. 301. 
it is felt that with the ones presented here the relevant 
information on the system is obtained more directly. 
It is noted that in equation (18) the individual Biot 
parameters are interchangeable without any effect on 
the mean value; hence by exchanging indices Figs. 5 
and 6 are applicable to cases where Biz < Bi, 

0.5 L I L I 1 I 
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 100 

--Sir 

FIG. 6. Ratio of exponential to harmonic average of the Biot number for different 
combinations of the individual parameters. 
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6. APPLICATIONS 

It is noticed in Fig. 2 that any error arising from 
the use of equation (21) rather than equation (18) is not 
projected linearly onto the extreme temperatures and 
storage capacity. At large Biot numbers the error in 

A, or H becomes small and the harmonic average may 
be used with good approximation. On the other hand, 
at small Biot numbers the exponential functions in 

equation (18) can be approximated by the first two 
terms of their power-series representation and 

equations (18) and (21) become identical. Apparently. 
this is the reason why in the limit of infinite rotational 
frequency w the harmonic average was found to be 

exact [14]. However in the range 0.5 < Bi < 5 the 
error can be substantial: as an example the storage 
capacity of a copper wire of variable diameter was 

calculated from [5] and from the present equations and 
the results are shown in Table 1. 

calculations described in SectIon 4. but no\i with 
variable slopes of the gas tcmperature~. It was found 
that for 2 < Bi < 7 and small slopcb up in 

( Tg2 - T,,)/( I0i.w) the exponential a\eragc still supplica 
more accurate results than the harmonic enc. With ;I 

very large slope, i.e. a fast change is.gas tempcraturc. 
even the harmonic average jiclds too I~ttlc stol-age 

capacity; this might have been the reason for suggesting 
the use of an arithmetic average. Houevcr. as the choice 
of the slope was arbitrary no further details \\ill be 
discussed here. The quantltativc results arc not 
significant as long as the slope IS not linked to a11 

energy balance. The reason for performing these 
calculations was to support the concluGon that \+ith 
high heat capacities of the gas streams and or short 

regenerators theexponcntial average is prcfcrablc 10 the 
harmonic one. 

It may be noted that detailed analq~cs have hecn 

Table 1. Storage capacity of a copper plate at ditrerent conditions and error resulting 
from the use of the harmonic average of the transfer coefficient 

Data : pc = 3.4% ; ; = 300; h, = 20; 
T92 

- Tgl = 200 

h2 20 100 200 

$/2X 0.1667 0.5 0.75 

0 
qexp 

qhann 
- 9 

qhan q & 
9 exD ew q exD exD q exe 

0.0001 393 1.090 556 1.025 473 1.131 

0.002 493 1.046 946 1.086 668 1.182 

0.004 537 1.014 1 325 1.074 811 1.127 

0.008 551 1.003 1 552 l.i129 899 1.361 

The analysis developed here is directly applicable to 
all situations where the gas temperatures stay constant 
(see Fig. 1). However, with many rotary and other 
regenerators the gas temperature at some interior point 
varies with time. A profile according to Fig. 7 is more 

likely to exist at some distance from the regenerator 
ends and one would like to know how accurately 
either of the discussed averages represents this 
distribution. For that purpose we repeated the 

q 

1-t 
FIG. 7. Approximated gas-temperature distribution in a 

regenerator. 

performed on the basis of Fig. I [14. 161 but on the 

assumption of an average transfer coefficient given by 
equation (21) 1141. This aforegoing seems to be 

inconsistent because if Fig. 1. apart from the absolute 
values of temperature, holds for any cross section 

then equation (18) also applies to the regenerator as a 
whole. 

Finally, we may correct a statement made previously 

about adjusting the phase angles for unequal gas-llou 
rates in rotary (in particular wire-screen) regenerators. 
It was recommended [16] that the ratio of the cross- 
sectional areas of the matrix be made equal to the 
corresponding ratio of the mass-flow vclocitics of the 
gases so that the heat-transfer coetficients became the 
same for both streams. From equation (1X) as well as 

equation (21) it is seen that this has no ctfect on the 
regenerator performance if the heat-transfer cocllicicnt 
is linearly proportional to the velocity, the latter being 
inversely proportional to the phase angtc. Howc\er. 
we know from experiments [32] that the fundamental 
results on cross flow over a wire [33] also hold for wire- 

mesh regenerators, hence over a wide range of velocities 

In that case the recommended design procedure may 
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yield lower individual Biot numbers in comparison 

with the ones for $J = 7~; according to equation (18) 

this results in a reduced efficiency of the exchanger. If, 

for purposes of reducing pressure losses, a change of 
the phase angles is still necessary its effect on the 
regenerator performance has to be analyzed by the use 

of equation (18) and Fig. 2. Particularly with gas- 
turbine plants the optimum phase angle for maximum 
efficiency must result from a balance of the effects of 

pressure drop and heat-exchanger performance. 
With high-temperature regenerators the selection of 

the storage material depends on the maximum matrix 

temperature at the hot end of the regenerator. Here 
the exponential average can be used with good 
approximation because the gas temperature stays 

constant during the heating period. Apparently, the 
critical temperature as predicted by equation (18) is 

lower than the one from equation (21) so that less 
expensive materials can be used in certain cases. 

7. CONCLUSIONS 

Heat exchange between a solid and a gas of 

periodically varying temperature has been analyzed 
resulting in easily applicable equations for extreme 

matrix temperatures and storage capacity. However, 
the process was assumed to be “gas-film” controlled 
and the gas temperatures were supposed to stay 
constant. The main purpose was to derive an equation 
for the average heat-transfer coefficient, which accounts 
for variable times of heating and cooling and differing 
individual transfer coefficients. It was found that the 
exponential average as defined by equation (18) is exact 
whereas the harmonic average yields only approximate 

results, i.e. too high temperature and storage capacity 
of the matrix. 

The possible use of the results in the design of 

rotary regenerators was discussed and it was concluded 
that the exponential average is applicable to short 

regenerators and/or processes with high heat capacities 
of the gas streams. The main advantage of this analysis 
over existing theories is that the effect of variable Biot 
numbers, given by equations (16), on the regenerator 
characteristics can be evaluated in a direct and simple 
way and therefore may be incorporated in an 
economical design procedure. 
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SUR LE COEFFIClENT DE TRANSFERT MOYEN DANS UN ECHANGIZ 
PERIODIQUE DE CHALEIJR: SOLIDE DE RESISTANCE THERMIQUE NEGLIGEABLE 

R&sumb On presente une analyst simple de r&gCnL;rateur unidimensionnel avcc conditions aux limites 
de troisitme esptice et changement discontinu de la tempt:rature du gaz. La capaciti; d’accumulation et la 
valeur des temptratures extr&mes rt:sultantcs sont affectts par les coetlicients de transfcrt thermique 
diffkrents pendant lcs p&odes de chauffage ct dc refroidissemcnt ainsi quc par le d+hasagc. On a 
developpt une expression analytique donnant le coeffcient moyen de transfert correct et on montrc que 
la moyenne harmonique souvcnt recommandL:c peut conduire B une surcstimatian des densitts de tlux 
de chaleur et des temp&ratures de matricc. 

Quoique cette &de nc soit exactc que pour IL‘ cas limitr d‘une matricc de longueur nulle ou d‘un gar 
de capacitk calorifique infinie. les rksultats sont &galement applicables B des situations plus proches de la 

rt:alitc. 

UBER DEN MITTLEREN wARMEUBEROANGSK~EFFIZIENTEN BEI PERIODISCHEM 
WiiRMEAUSTAUSCH: UNENDLICH GUT LEITENDE SPEICHERMASSE 

Zusammenfassung--Fir den periodischen Warmeaustausch zwischen cinem Gas von sprungartig 

verkderlicher Temperatur und einem unendlich gut leitenden Material wird ein einfaches Berechnungs- 
verfahren angegeben. Die Speicherkaparitgt und extremen Matcrialtemperaturen hiingen nicht nur von 
der relativen Dauer der Heizzeit sondern such von den unterschiedlichen Warmeiibergangskoeffizienten 
in Heiz-und Kiihlzeit ab. Eine exakte Beziehung fiir den mittleren Wlirmeiibergangskoefizienten wird 
hergeleitet, und es zeigt sich, da13 der oft empfohlene harmonische Mittelwert zu hohe Werte fiir die 
Speicherkapazitgt und Matrixtemperatur liefert. 

Obwohl das Verfahren streng genommcn nur auf den unendlich kurzen Regenerator 
unendlichcr Wiirmekapazitst der Gase anwendbar ist. lassen sich such realistlschere Falle 

Naherung behandeln. 

oder bei 

mit guter 

CPEAHMI? K03@@MUMEHT IlEPEHOCA TEnJlA AflR TBi?PAOI-0 TEnA 
C HE3HAYMTEnbHbIM TEnnOBbIM COnPOTMBJlEHMEM IIPM 

flEPMOAMYECKOM M3MEHEHMM TEMnEPATYPbl 

AmtoTaqwt - nponeaell a~ant13 Oni1ohlepHoro peretieparopa C rpatikiYHbl~M ~C;IOHMRMM TpeTbero 

poaa H cryneHraTblr4 M3MerleHcleM TehinepaTypbl ra3a. Pe3ynbrlrpymulan aKKyMy;Ikip>~ulan ChiKocTb 

Ii 3KCTpeMaJIbHblc reMnepaTypb1 3aBtiCRT OT pa3,7WHblX K07Cj@lLIMeHToB TennoO6MeHa npki HarpeBe 

H oXnamfleutiu, a Tali-xe or yrna c_nmira (pa3 npki Harpeae. nonyyeuo aHaJlMTi4qecKoe BblpameHr4e ~-154 

coo~BemxBytotuer0 cpeaHer0 Ko?$@wukictiTa nepetioca M IioKa?aHo, q~o Yacio Mcnonb.syehlan cpen- 
HRI rapMo,,HKa MOmC?, Llarb Oqellb BblCOKMe 3Ha’,eHMR “>VC,, HOCTU TeIIJIOBOrO r,OTOKa II ~ChlIle,,a~ypbl 

MaTpHLIb,. Hechwrpn Ha TO. LLro 3707 akla:lm TO~C‘II loflbK0 ,!LIR npenc.lbtioro c;ly’taw HyneBOti 

flnt4tlL.l MaTpMubl H,~M 6eL‘Koueqttoii TenJIOeMKOcrLI ra’la. “Ony’,eHllblf2 pUy,lbTaTbl MO2CHO 7aKxe 

HC”‘I.‘lb3OBa~b B Go.rlec ‘IaCT ISClpeqaHllllMXCfl R npaKTMKe Cfly’iaSlX. 


